The survival probability for critical spread - out oriented percolation above 4 + 1 dimensions . II . Expansion
نویسندگان
چکیده
We derive a lace expansion for the survival probability for critical spread-out oriented percolation above 4+1 dimensions, i.e., the probability θn that the origin is connected to the hyperplane at time n, at the critical threshold pc. Our lace expansion leads to a nonlinear recursion relation for θn, with coefficients that we bound via diagrammatic estimates. This lace expansion is for point-to-plane connections and differs substantially from previous lace expansions for point-to-point connections. In particular, to be able to deduce the asymptotics of θn for large n, we need to derive the recursion relation up to quadratic order. The present paper is Part II in a series of two papers. In Part I, we use the recursion relation and the diagrammatic estimates to prove that limn→∞ nθn = 1/B ∈ (0,∞), and also deduce consequences of this asymptotics for the geometry of large critical clusters and for the incipient infinite cluster.
منابع مشابه
The survival probability for critical spread-out oriented percolation above 4 + 1 dimensions. I. Induction
We consider critical spread-out oriented percolation above 4+1 dimensions. Our main result is that the extinction probability at time n (i.e., the probability for the origin to be connected to the hyperplane at time n but not to the hyperplane at time n + 1) decays like 1/Bn2 as n →∞, where B is a finite positive constant. This in turn implies that the survival probability at time n (i.e., the ...
متن کاملConstruction of the incipient infinite cluster for spread-out oriented percolation above 4 + 1 dimensions
We construct the incipient infinite cluster measure (IIC) for sufficiently spread-out oriented percolation on Zd × Z+, for d + 1 > 4 + 1. We consider two different constructions. For the first construction, we define Pn(E) by taking the probability of the intersection of an event E with the event that the origin is connected to (x, n) ∈ Z×Z+, summing this probability over x ∈ Zd, and normalisin...
متن کاملCritical Two-point Functions and the Lace Expansion for Spread-out High-dimensional Percolation and Related Models by Takashi Hara,1 Remco
We consider spread-out models of self-avoiding walk, bond percolation, lattice trees and bond lattice animals on Zd , having long finite-range connections, above their upper critical dimensions d = 4 (self-avoiding walk), d = 6 (percolation) and d = 8 (trees and animals). The two-point functions for these models are respectively the generating function for selfavoiding walks from the origin to ...
متن کاملCritical points for spread - out self - avoiding walk , percolation and the contact process above the upper critical dimensions Remco
We consider self-avoiding walk and percolation in Zd, oriented percolation in Z×Z+, and the contact process in Zd, with pD( · ) being the coupling function whose range is denoted by L < ∞. For percolation, for example, each bond {x, y} is occupied with probability pD(y−x). The above models are known to exhibit a phase transition when the parameter p varies around a model-dependent critical poin...
متن کاملCritical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models
We consider spread-out models of self-avoiding walk, bond percolation, lattice trees and bond lattice animals on Zd, having long finite-range connections, above their upper critical dimensions d = 4 (self-avoiding walk), d = 6 (percolation) and d = 8 (trees and animals). The two-point functions for these models are respectively the generating function for selfavoiding walks from the origin to x...
متن کامل